US009330279B2

a2z United States Patent (10) Patent No.: US 9,330,279 B2
Filatov et al. 45) Date of Patent: May 3, 2016
(54) SYSTEM AND METHOD FOR BLOCKING 7,168,048 B1* 1/2007 Goossenetal. 715/797
ELEMENTS OF APPLICATION INTERFACE 7,240,360 B1* 7/2007 Phan ..o 726/2

(71) Applicant: Kaspersky Lab, ZAO, Moscow (RU)

(72) Inventors: Konstantin M. Filatov, Moscow (RU);
Victor V. Yablokov, Moscow (RU)

(73) Assignee: Kaspersky Lab, ZAO, Moscow (RU)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.
(21) Appl. No.: 14/192,339

(22) TFiled: Feb. 27,2014

(65) Prior Publication Data
US 2015/0160813 Al Jun. 11, 2015

(30) Foreign Application Priority Data

Dec.5,2013 (RU) oooveieiiiiicice 2013153762

(51) Int.CL
GOGF 21/62
GOGF 21/10

(52) US.CL
CPC oo GOGF 21/629 (2013.01); GOGF 21/10
(2013.01)

(2013.01)
(2013.01)

(58) Field of Classification Search
CPC ... GOG6F 21/00; GOG6F 21/56; GOGF 21/566;
GOG6F 21/629
USPC ittt 715/741
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,107,443 A * 4/1992 Smithetal. 715/751
6,006,332 A 12/1999 Rabne et al.

6,144,377 A * 11/2000 Oppermann et al. 715/744
6,717,589 B1* 4/2004 Grilloetal. 715/715

7,533,345 B2* 5/2009 715/745
8,341,744 B1* 12/2012 Obrecht GO6F 21/41
713/188
8,776,227 B1* 7/2014 Glickoeovvenrn. GO6F 12/14
726/23
8,904,538 B1* 12/2014 Glickcc.oevvvenrns GO6F 21/56
726/24
(Continued)
FOREIGN PATENT DOCUMENTS

GB EP 2642718 A2 * 9/2013 ... GO6F 21/55

WO W02008048800 4/2008

OTHER PUBLICATIONS

IPCOMO000177012D, “Method, system and apparatus for usage
based filtering of elements of dialog-based user interfaces using local
and central repositories”, Dec. 3, 2008.*

(Continued)

Primary Examiner — Jennifer To
Assistant Examiner — Joseph R Burwell
(74) Attorney, Agent, or Firm — Bardmesser Law Group

(57) ABSTRACT

A method, system and computer program product for block-
ing access to restricted elements of application interface and
covering the restricted elements by trusted interface ele-
ments. The system includes an analyzer module, a database of
restricted elements and a blocking module. The analyzer
module is configured to detect interface elements of an active
application rendered on a computer or a mobile device. The
analyzer module determines if an application interface ele-
ment is restricted by comparing the application interface ele-
ment against the known restricted interface elements from the
database. If the restricted element is detected, the analyzer
module sends the data about the restricted element to the
blocking module. The blocking module covers the restricted
interface element by a trusted interface element or by an
image.

14 Claims, 4 Drawing Sheets

PORBIODEN

Plosse snter inlock pesswonds

| Lorbidden

US 9,330,279 B2

Page 2
(56) References Cited 2012/0144492 A1* 6/2012 Griffinccccvnnan GOGF 21/56
726/25
U.S. PATENT DOCUMENTS 2012/0158956 Al 6/2012 Sako
2012/0265663 Al 10/2012 Youngren et al.

8,910,064 B2 12/2014 Shinomoto et al. 2012/0278895 Al* 11/2012 Morris ...cccoovvvennne GO6F 21/56
2002/0180792 Al 12/2002 Broussard 726/24
2003/0217287 Al 11/2003 Kruglenko 2012/0324359 Al* 12/2012 Leeetal. ... 715/733
2004/0070612 Al 4/2004 Sinclair et al. 2013/0117102 Al* 5/2013 Barbieriet al. .. 705/14.43
2005/0065935 Al 3/2005 Chebolu et al. 2013/0124285 Al* 5/2013 Pravetzetal. .. 705/14.23
2007/0061723 AL* 3/2007 Ohgaetal. ... 715/705 2013/0227394 Al* 82013 Sazhinetal. 715/234
2007/0204288 Al* 82007 Candelore HO4N 5/4401 2013/0276105 Al* 10/2013 Hinchliffe GOG6F 21/554

725/28 726/22
2007/0283292 Al* 12/2007 Bucheretal. 715/810 2014/0053262 Al™ 22014 Sarangdhar GO6F 3/14
2008/0098229 Al* 4/2008 Hartrell ... GOGF 21/554 726/22
713/176 2014/0157160 Al* 6/2014 Cudaketal.c...... 715/766
2008/0148235 Al 6/2008 Foresti et al 2014/0325654 Al* 10/2014 Deniscoocvvvenrene GO6F 21/567
: ' 726/24
2008/0208579 Al* 8/2008 Weissetal. ..o 704/244 %
2008/0244748 Al* 10/2008 Neystadt HO4L 63/1425 2015/0058988 Al* 2/2015 Kafz ..o HO4L 23/61/‘2‘2
726/25
2009/0089663 Al* 4/2009 Rebstock etal. 715/253 OTHER PUBLICATIONS
2009/0201535 Al 8/2009 N t al.
2010/0131868 Al* 5/2010 Cﬁfjv(iaeefal 715/759 IPCOMO000199080D, “Method for augmenting the user interfaces of
2010/0180344 Al* 7/2010 Malyshev GO6F 21/566 legacy applications”, Aug. 25, 2010.*
726/23 IPCOMO000199843D, “A method for limiting the features available to
2010/0185953 Al 7/2010 Grandemenge a user based on their estimated expertise”, Sep. 17, 2010.*
2011/0087990 Al 4/2011 Ng et al. Search Report in PCT/RU/2013/153762/08(084043), dated May 12,
2011/0239113 Al* 9/2011 Hungetal. 715/271 2013.
2012/0011451 Al* 1/2012 Bansal etal. 715/753
2012/0036452 Al* 2/2012 Coleman et al. 715/751 * cited by examiner

US 9,330,279 B2

Sheet 1 of 4

May 3, 2016

U.S. Patent

0cl

} "Old

ajnpopy bupoolg

ovi

0cl

\\\lllll./

sjusWo|
pejoL)sey
J0 aseg ejeq

a|Npoy JozAjeuy |«

oLl

U.S. Patent May 3, 2016 Sheet 2 of 4 US 9,330,279 B2

210

Launch Application

211
A 4 /

Detect rendering of
Application Interface Element

Is Interface Element
Restricted?

213 214
¥ / Y
Continue to Display Block Restricted Application
Application Element

FIG. 2

US 9,330,279 B2

Sheet 3 of 4

May 3, 2016

U.S. Patent

uspp

i

-

qio4

€

Old

QIOHANY vo:

suopesidde sazg

s v b

US 9,330,279 B2

—§ SWv¥S0ud
NOLLYOI1ddY

¥, ssnopw

¥ 'Old

09 - /3 (53 s3Tnaow It |S% sasz4
U ov 9¢

C RS 7 plecalen viva | WvHOOMd | SWVHOOMd [GE / WSLSAS

_ +M bl Y | wvaoond (8¢ ¥3HLO | NOLLYOITddY [ONILYH3d0

s
b ez~
v L
&
e .

Sheet 4 of 4

May 3, 2016

U.S. Patent

wapon -
. w
HioMmioN ealy SpIM + \é f 82 . N‘ -
||||||||||||||||| RN N, e e o o e e B ||VR||I|||I|I||I|I!||IJ
! L y B = 13
|
! €S e £€
_, .J W.VJ vy J _ I.J NﬂJ viva
| avejio3ul aosepiajyl aoeliaju] [-2.3:781:-384]] BE NVHOOMA
, e,_owﬂmw:_ od SALIQ aALIQ ASIA aAlg
, HOMIEN lenog tesndo ogeuBew | | ¥sia peH | | [gF s3anaom
W .«w\# 3 WYYSO0ud ¥IHLO
|
891A2Q | —
o , 7€ SWVXOO0OHd
efeiois NOLLYDITddY
sng waisAg
g¢ W3LSAS
\— &z 3114
ST WI1LSAS
ONULUYNM L0
Jaydepy igydepy (74
ISOH J oapIA d \. aun \ ||||||||| g m%i_@ww_svl
o9 o 12 Bujsssooid b4 A 9 soig
I R R ¥Z2__(wow) |
1 Kowoay weysis

US 9,330,279 B2

1
SYSTEM AND METHOD FOR BLOCKING
ELEMENTS OF APPLICATION INTERFACE

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention is related to application interfaces
and, in particular, to a method and system for blocking appli-
cation interface elements based on certain restrictions.

2. Description of the Related Art

Modern applications are more complex than in the past,
and the applications have complex user interfaces that reflect
functionality of the application. A typical application inter-
face has control elements: menus, command lines, buttons,
labels, text boxes, lists, etc. implemented in a graphic form. A
user has access to all visible interface elements and can trig-
ger the corresponding application functions by /O devices
such as a keyboard, a mouse, a joystick, a touch screen fea-
ture, etc.

Typically, the interface elements reflect their functionality
and properties, which makes it easier for a new user to work
with the application. However, in some cases, certain appli-
cation functionality needs to be restricted (or blocked). For
example, in cases of parental control, certain application fea-
tures or links need to be blocked due to unsuitable content.
Game applications have in-game purchase options that may
not be allowed by the parents. Parents may want to allow a
child to use the game application, but do not allow him to
spend real money on in-game purchases. In such cases there
is no need to block the entire application.

Several conventional solutions exist for analyzing user
interaction with the application through the application inter-
face. Patent publication WO2012176365A1 discloses replac-
ing one screen image with another one using an application
interface generation module. The application interface is gen-
erated based on a set of attributes of the interface elements.

Patent publication US 20080148235A1 describes an algo-
rithm for analyzing application interfaces and comparing
them against the design specifications provided by the user.
An interface analysis system determines if the interface ele-
ments are displayed correctly. However, the conventional
solutions analyze user interaction with the application via the
interface, but do not limit the access to certain interface ele-
ments.

Accordingly, a method for limiting access to the applica-
tion interface is desired.

SUMMARY OF THE INVENTION

The present invention is related to application interfaces
and, in particular, to a method and system for blocking appli-
cation interface elements based on certain restrictions that
substantially obviates one or several of the disadvantages of
the related art.

The present invention provides a method, system and com-
puter program product for blocking access to restricted ele-
ments of application interface and covering the restricted
elements by trusted interface elements. The system includes
an analyzer module, a database of restricted elements and a
blocking module. The analyzer module is configured to detect
interface elements of an active application rendered on a
computer or a mobile device. The analyzer module deter-
mines if an application interface element is restricted by
comparing the application interface element against the
known restricted interface elements from the database. If the
restricted element is detected, the analyzer module sends the
data about the restricted element to the blocking module. The

10

15

20

25

30

35

40

45

50

55

60

65

2

blocking module covers the restricted interface element by a
trusted interface element or by an image.

Additional features and advantages of the invention will be
set forth in the description that follows, and in part will be
apparent from the description, or may be learned by practice
of the invention. The advantages of the invention will be
realized and attained by the structure particularly pointed out
in the written description and claims hereof as well as the
appended drawings.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are intended to provide further
explanation of the invention as claimed.

BRIEF DESCRIPTION OF THE ATTACHED
FIGURES

The accompanying drawings, which are included to pro-
vide a further understanding of the invention and are incor-
porated in and constitute a part of this specification, illustrate
embodiments of the invention and, together with the descrip-
tion, serve to explain the principles of the invention.

In the drawings:

FIG. 1 illustrates an architecture of a system for blocking
the application interface elements, in accordance with the
exemplary embodiment;

FIG. 2 illustrates an algorithm for blocking the application
interface elements, in accordance with the exemplary
embodiment;

FIG. 3 illustrates a screen shot depicting blocking the
restricted interface elements, in accordance with the exem-
plary embodiment;

FIG. 4 illustrates a schematic of an exemplary computer
system or a server that can be used for implementation of the
invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Reference will now be made in detail to the preferred
embodiments of the present invention, examples of which are
illustrated in the accompanying drawings.

According to the exemplary embodiment, a method, sys-
tem and computer program product for blocking application
interface elements is provided. The application has the appli-
cation interface (or GUI) with the interface elements provid-
ing access to the various functions of the application. An
active application displays its interface as a foreground on a
computer or a mobile device screen. The user interacts with
the application via the application interface elements such as
awindow, a button, a scroll bar, a flag, a link, an icon, a menu,
a checkbox, etc. The interface elements are treated as parts of
a particular application. The elements can be generic or
unique. The system includes an analyzer module, a database
of restricted elements and a blocking module. The analyzer
module is configured to detect interface elements of an active
application rendered on a computer or a mobile device. The
analyzer module determines if an application interface ele-
ment is restricted by comparing the application interface ele-
ment against the known restricted interface elements from the
database. If the restricted element is detected, the analyzer
module sends the data about the restricted element to the
blocking module. The blocking module covers the restricted
interface element by a trusted interface element or by an
image.

According to an exemplary embodiment, if the interface
contains some elements that trigger undesired actions, the

US 9,330,279 B2

3

elements are blocked by being covered by other (trusted)
interface elements or by images. Note that the user may not be
able to close the application with the undesired elements due
to not having admin rights to close applications. This, advan-
tageously, allows for running the application instead of ter-
minating it because some undesired (restricted) elements are
detected. The image or the trusted interface elements can be
rendered using graphic functionality of a particular OS. An
image or a trusted interface element is constantly displayed
over the restricted interface element. The image can be, for
example, a white or a black square of a size of the restricted
element being covered. An exemplary code for generating
such an image is as follows:

case WM_PAINT:

{

HDC hDC=::GetDC(NULL);
::Rectangle(hDC,500,500,600,600);
::ReleaseDC(NULL, hDC);

break;

According to the exemplary embodiment, the trusted inter-
face element, which covers the restricted interface element,
can belong to an anti-virus application. For example, the
trusted element can be a window displaying a warning about
the restricted element. The restricted elements can belong to
a malware application. Clicking on these elements can result
in infection of the computer system hosting the application.
According to the exemplary embodiment these potentially
malicious application elements are blocked by being covered
by other trusted elements.

The undesired elements can be also covered by images of
different color. Additionally, the elements can be covered by
a similar (by shape and color) element with a different caption
(i.e., for example, a button with an alternative caption or with
no caption at all). Also, an identical button can be used with a
different functionality. An “OK” button can perform closing
of an application instead of agreeing to run some potentially
malicious or unapproved components.

Other restricted elements are the elements that allow access
to confidential or age-restricted data. The interface elements
that allow for execution of payments can also be restricted.
For example, an interface element can allow for sending an
SMS or connecting to the Internet, which may result in addi-
tional charges. The restricted element can be determined
based on a user feedback and analysis of logged user activi-
ties. The analysis can be performed by a user, as well as by the
developers. The user can mark the elements of the interface
that seem too suspicious, for example, exercising parental
control. Then, these elements are analyzed for malware by
developers.

According to the exemplary embodiment, the restricted
elements are blocked by trusted elements or images that cover
the restricted element. FIG. 1 illustrates an architecture of a
system for blocking the application interface elements, in
accordance with the exemplary embodiment. The system
includes an analyzer module 120, a database of restricted
elements 140 and a blocking module 130. The analyzer mod-
ule 120 is configured to detect interface elements of an active
application 110 rendered on a computer or a mobile device.
The analyzer module 120 determines if an application inter-
face element is restricted by comparing the application inter-
face element against the known restricted interface elements
from the database 140. The database 140 can be updated from
the AV server or from a cloud. If a restricted element is
detected, the analyzer module 120 sends the data about the

15

20

25

30

40

45

55

4

restricted element to the blocking module 130. The blocking
module 130 covers the restricted interface element by a
trusted interface element or by an image. The trusted interface
element can be selected based on configurations. If a user
selects an image, the trusted image is used. If the user selects
an interface element, the window with a password is dis-
played and the user can replace the element upon entering the
password.

According to the exemplary embodiment, the interface
element of the application 110 can be detected in a synchro-
nous or asynchronous mode. In the synchronous mode, the
analyzer module 120 detects the interface elements right after
they are displayed by the application. In the asynchronous
mode, the analyzer module 120 detects the interface elements
with a delay. The display of the element can be detected based
on a system log or by interception of the system messages.
Alternatively, the analyzer module 120 can analyze the active
windows. For example, Symbian platform has a class Rwin-
dowGroup, which has a method EnableFocusChangeEvents.

According to the exemplary embodiment, the blocking
module is an application or a part of an anti-virus module. The
covering of the restricted elements is implemented on a com-
puter or a mobile device where the application is installed.
The database of the restricted elements can be implemented
on the cloud storage. According to one exemplary embodi-
ment, the database of the known restricted interface elements
140 stores the samples of known restricted (undesirable)
interface elements and parameters of the restricted elements.
All interface elements have their IDs. The elements can be
searched based on a combination of IDs, based on templates
(i.e., a set of elements of a dialog window). For example, in
MS Windows a set of identifiers can be a set of coordinates X,
Y and parent HWND. Example of a template is a window of
certain kind with a certain number of elements.

The analyzer module 120 compares the samples and
parameters of the interface element against the known
restricted elements from the database 140. For example, the
main parameter for comparison can be an identifier (i.e., an
alphanumeric value) of the interface window and the dialog
window can be used as a comparison element.

According to another exemplary embodiment, the
restricted elements can be determined by content analysis of
the interface elements. The content analysis can reveal links
to adult materials or to confidential data. The content analysis
of'the images can detect adult content or restricted data. The
database 140 can be implemented as a hierarchical database
(e.g., IMS, TDMS, System 2000), network-based storages
(e.g., Cerebrum, Cronospro, DBVist), relational databases
(e.g., DB2, Informix, Microsoft SQL Server), object-oriented
databases (e.g., Jasmine, Versant, POET), object-relational
databases (e.g., Oracle Database, PostgreSQL, FirstSQL/J,
functional, etc.).

According to one exemplary embodiment, the analysis
module 120 can detect certain user actions on application
interface elements. The user actions can be a mouse click (left
or right), pressing key on a keyboard, pressing certain key
simultaneously, or pressing the keys in a certain order. In this
case, the database 140 contains samples and templates of
known restricted user actions. The analyzer module 120
detects user actions on interface elements and compares the
user actions against the restricted user actions from the data-
base 140.

If a restricted user action is detected, the analyzer module
120 provides the related data to the blocking module 130.
Examples of the restricted user actions are a launch of an
application that belongs to a certain category (e.g., a known
malware application). Some user actions can be aggregated

US 9,330,279 B2

5

into groups. The main group is the user actions directed to
launch of an application by a double click on the application
icon on the desktop or mobile device screen, by a click on a
link, by pressing of an “Enter” key, combination of keys, by
left mouse click on a context menu “open” and a subsequent
right mouse click, etc. Entering a path to the executable
application file in the console can also launch the application.
In the Android OS, the restricted actions are the correspond-
ing touch screen actions that trigger a launch of an applica-
tion.

A second component of a restricted action is the actual
interface element subject to a user action. Pressing on a cer-
tain button (e.g., a “Send” button) can be restricted. Other
elements can be a line of a context menu, a flag, etc. A third
component of the restricted action is the reason why the
action is undesirable. The action can be considered restricted
based on the reputation of the interface element. For example,
if the element is an icon of an application belonging to a
restricted category, a double click on the icon must be
restricted.

The restricted element can be a button that opens a window
restricted for viewing. An example of such a window is a form
for entering credit card data and other payment-related data.
Another reason for restricting an action is importance of the
data that the action may access. Thus, for example, any
actions that open text files can be restricted. Another reason
for restricting a user action can be an action that is unusual for
aparticular user. A user can define a set of actions that identify
him.

For example, in Android OS, the user can have a following
set of actions: unblocking of the screen, activation of a top
fold-down menu, switching off vibration, turning on vibra-
tion. A user who performs these actions can use all features of
the installed applications. However, if an intruder obtains a
mobile device password but does not perform a set of required
actions in a particular order that uniquely identify the user, the
application’s interface elements that expose the user’s per-
sonal data are blocked. Additionally, the mobile device can
send a message (e.g., an email) notifying the user of an
attempt of unauthorized access to the user’s personal data.

According to the exemplary embodiment, a sequence of
user actions on the interface elements can be analyzed as a
script and the actions can be restricted. The user action script
can contain several moves from one interface element to
another. The actions script can be generated by the OS. Detec-
tion of malicious actions can be performed automatically or
in a manual mode. In an automated mode, a depth of four
actions can be used. The system forms a set of four actions,
where the last one is the undesired one. In the manual mode,
the user can mark the sequence of actions that produce undes-
ired event and report it to the AV module.

For example, if an interface window has a “next” button,
the use of the action script can be effective when restricted
interface elements are used after several jumps to the next
window. The action script is considered retractable if its
execution will result in displaying of the restricted interface.
If the user actions follow a restricted script, the interface
elements involved are blocked.

The blocking module 130 covers a restricted element by a
trusted interface element or by an image. The trusted element
can be selected based on configurations. If a user has a per-
mission to unblock the elements, the restricted element is
covered by the trusted element that can be unblocked (re-
moved) if necessary. For example, the button confirming a
purchase can have a dialog window with a password used to
unblock this button (see FIG. 3). In cases when a trusted

10

15

20

25

30

35

40

45

50

55

60

65

6

interface element cannot be used due to size restrictions of the
undesired element, this element can be covered by an image
of a required size.

If a user decides to work with the application with the
restricted element, the restricted element is blocked again.
According to the exemplary embodiment, the blocking of the
interface element can be temporary. For example, limited
access to game applications can be lifted for child’s free time
period and imposed again at other times.

The system for blocking the interface elements is particu-
larly effective in an environment where all applications have
the same level of privileges (e.g., Android OS, MS Windows,
Symbian, Tizen, 108, Linux, etc.). The OS Android keeps a
system log (Logcat) of all applications that allows for detec-
tion of displayed interface elements. If a trusted application is
launched, the system connects to the system log. The system
log is populated during the user interactions with the appli-
cation. The content of the system log is analyzed. Especially,
all the records related to an Activity Manager are scanned.
The Activity Manager is a component of the Android OS,
which is responsible for switching between application inter-
face elements and for controlling the application life cycle. If
a record marked “activitymanager” begins with “starting” or
“displayed,” this means that the user can see the application
interface elements. The record also indicates a name of the
application package, which is displayed on the screen.

The system periodically checks which application is active
on the screen:

final ActivityManager am=(ActivityManager)

mContext.getS ystemService(Service. ACTIVITY_SER-
VICE);

final List<ActivityManager.RunningTaskInfo> tasks=
am.getRunning Tasks(1);

final ActivityManager.RunningTaskInfo task=tasks.get

©0);

final String pkgName=task.topActivity.getPackage-
Name();

task.topActivity

where task.topActivity—is an interface element, which is
currently displayed on the screen; pkgName—is a name of
the application package currently displayed on the screen.

According to the exemplary embodiment, in order to detect
restricted interface elements, black lists of application pack-
ages and interface elements can be used. The system can
employ a black list of interface elements to determine the
application interface elements that need to be blocked, or can
employ a black list of application packages to determine the
application interface elements that needs to be blocked. In
this case, the displayed interface elements are compared
against the interface elements from the black list. FIG. 2
illustrates an algorithm for blocking the application interface
elements, in accordance with the exemplary embodiment. In
step 210 an active application renders at least one interface
element of application 110 (FIG. 1). In step 211 the analyzer
120 detects the rendered interface element of the application
110. In step 212 the analyzer 120 determines if the interface
element is restricted by comparing the element against known
restricted elements from the database 140. If the interface
element is deemed to be not restricted, the user continues to
work with the application in step 213. In step 214, if the
restricted element is detected, the analyzer module 120 sends
a notification to the blocking module 130, which blocks the
restricted element by covering it with a trusted element or by
an image.

FIG. 3 illustrates a screen shot depicting blocking the
restricted interface elements, in accordance with the exem-
plary embodiment. FIG. 3 illustrates the two exemplary cases

US 9,330,279 B2

7

of blocking the application interface elements. In a first
example (top two screen shots) the application offers to buy
in-game money or tokens using the real money. There are six
interface elements that can cause a loss of money. These
elements are covered by another element, which allows for
unblocking the game interface elements.

In a second example (two bottom screen shots) a user is
offered to use a link to a supposedly free application for
Android OS, e.g., for downloading it. After the link revealed
amalicious application, the interface element was blocked by
an image with a “Forbidden” label.

With reference to FIG. 4, an exemplary system for imple-
menting the invention includes a general purpose computing
device in the form of a computer system/administration
server 20 or the like including a processing unit 21, a system
memory 22, and a system bus 23 that couples various system
components including the system memory to the processing
unit 21.

The system bus 23 may be any of several types of bus
structures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus
architectures. The system memory includes read-only
memory (ROM) 24 and random access memory (RAM) 25. A
basic input/output system 26 (BIOS), containing the basic
routines that help transfer information between elements
within the computer 20, such as during start-up, is stored in
ROM 24.

The computer 20 may further include a hard disk drive 27
for reading from and writing to a hard disk, not shown, a
magnetic disk drive 28 for reading from or writing to a remov-
able magnetic disk 29, and an optical disk drive 30 for reading
from or writing to a removable optical disk 31 such as a
CD-ROM, DVD-ROM or other optical media. The hard disk
drive 27, magnetic disk drive 28, and optical disk drive 30 are
connected to the system bus 23 by a hard disk drive interface
32, a magnetic disk drive interface 33, and an optical drive
interface 34, respectively. The drives and their associated
computer-readable media provide non-volatile storage of
computer readable instructions, data structures, program
modules and other data for the computer 20.

Although the exemplary environment described herein
employs a hard disk, a removable magnetic disk 29 and a
removable optical disk 31, it should be appreciated by those
skilled in the art that other types of computer readable media
that can store data that is accessible by a computer, such as
magnetic cassettes, flash memory cards, digital video disks,
Bernoulli cartridges, random access memories (RAMs),
read-only memories (ROMs) and the like may also be used in
the exemplary operating environment.

A number of program modules may be stored on the hard
disk, magnetic disk 29, optical disk 31, ROM 24 or RAM 25,
including an operating system 35. The computer 20 includes
a file system 36 associated with or included within the oper-
ating system 35, one or more application programs 37, other
program modules 38 and program data 39. A user may enter
commands and information into the computer 20 through
input devices such as a keyboard 40 and pointing device 42.
Other input devices (not shown) may include a microphone,
joystick, game pad, satellite dish, scanner or the like.

These and other input devices are often connected to the
processing unit 21 through a serial port interface 46 that is
coupled to the system bus, but may be connected by other
interfaces, such as a parallel port, game port or universal serial
bus (USB). A monitor 47 or other type of display device is
also connected to the system bus 23 via an interface, such as
a video adapter 48. In addition to the monitor 47, personal

10

15

20

25

30

35

40

45

50

55

60

65

8

computers typically include other peripheral output devices
(not shown), such as speakers and printers.

The computer 20 may operate in a networked environment
using logical connections to one or more remote computers
49. The remote computer (or computers) 49 may be another
computer, a server, a router, a network PC, a peer device or
other common network node, and typically includes many or
all of the elements described above relative to the computer
20, although only a memory storage device 50 has been
illustrated. The logical connections include a local area net-
work (LAN) 51 and a wide area network (WAN) 52. Such
networking environments are commonplace in offices, enter-
prise-wide computer networks, Intranets and the Internet.

When used in a LAN networking environment, the com-
puter 20 is connected to the local network 51 through a
network interface or adapter 53. When used in a WAN net-
working environment, the computer 20 typically includes a
modem 54 or other means for establishing communications
over the wide area network 52, such as the Internet.

The modem 54, which may be internal or external, is con-
nected to the system bus 23 via the serial port interface 46. In
anetworked environment, program modules depicted relative
to the computer 20, or portions thereof, may be stored in the
remote memory storage device. It will be appreciated that the
network connections shown are exemplary and other means
of'establishing a communications link between the computers
may be used.

Having thus described a preferred embodiment, it should
be apparent to those skilled in the art that certain advantages
of'the described method and apparatus have been achieved. In
particular, those skilled in the art would appreciate that the
proposed system and method provide for efficient blocking of
restricted application interface elements without blocking the
entire application.

It should also be appreciated that various modifications,
adaptations and alternative embodiments thereof may be
made within the scope and spirit of the present invention. The
invention is further defined by the following claims.

What is claimed is:

1. A computer-implemented system for blocking applica-

tion interface elements, the system comprising:

a processor;

a memory coupled to the processor;

an application stored in the memory and running on the
processor;

an analysis module stored in the memory and executed on
the processor, the analysis module configured to analyze
an interface element of the application and determine
interface elements that need to be blocked based on (i) a
system log, (ii) a category of the application, including
whether the application belongs to known or suspected
malware, (iii) analysis of active windows, and (iv) repu-
tation of the interface elements, including the category
of the application to which the interface elements
belong;

a database stored in the memory, the database storing
restricted application interface elements accessible by
the analysis module and identified as the restricted appli-
cation interface elements prior to the application being
launched,

wherein the restricted application interface elements per-
mit interaction from a user and are first rendered by the
application prior to being blocked; and

a blocking module configured to block the application
interface elements by overlaying the application inter-
face element with another trusted application interface

US 9,330,279 B2

9

element in real time after the application attempts to
render the restricted application interface elements,

wherein the analysis module acquires data from the appli-
cation and from the database for selecting the applica-
tion interface elements to be overlaid.

2. The system of claim 1, wherein the blocking module is
configured to block the application interface elements by
overlaying the application interface element with an image.

3. The system of claim 1, wherein the blocking module
blocks a dialog window by drawing an image over it.

4. The system of claim 3, wherein the dialog window can be
unblocked upon user request.

5. A computer-implemented method for blocking applica-
tion interface elements, the method comprising:

launching an application on a computer system;

detecting application interface elements;

connecting to a database of restricted application interface

elements;

comparing the detected application interface elements

against the database of restricted application interface
elements, wherein the database is populated with the
restricted application interface elements prior to the
application being launched,

wherein the restricted application interface elements per-

mit interaction from a user and are first rendered by the
application prior to being blocked;

determining the application interface elements to be

blocked, if the application interface elements match the
restricted application interface elements from the data-
base and based on (i) a system log, (ii) a category of the
application, including whether the application belongs
to known or suspected malware, (iii) analysis of active
windows, and (iv) reputation of the interface elements,
including the category of the application to which the
interface elements belong; and

blocking the application interface elements by overlaying

them with trusted interface elements in real time after the
application attempts to render the restricted application
interface elements.

6. The method of claim 5, further comprising blocking the
interface elements by overlaying them with images.

7. The method of claim 5, further comprising unblocking
the interface elements upon a user request.

8. The method of claim 5, further comprising periodically
checking which active application is rendered to a user.

9. The method of claim 5, further comprising:

detecting user actions on the application interface ele-

ments;

10

15

20

25

30

35

40

45

10

analyzing the user actions; and

blocking the application interface elements, if the user
actions match a restricted user action from the database.

10. The method of claim 5, wherein the detecting of the
application interface elements is performed in a synchronous
mode.

11. The method of claim 5, wherein the detecting of the
application interface elements is performed in an asynchro-
nous mode.

12. The method of claim 5, further comprising employing
a black list of interface elements for determining the applica-
tion interface elements to be blocked.

13. The method of claim 5, further comprising employing
a black list of application packages for determining the appli-
cation interface elements to be blocked.

14. A system for blocking application interface elements,
the system comprising:

a processor;

a memory coupled to the processor, a computer program
logic stored in the memory and executed on the proces-
sor, the computer program logic is configured to execute
the steps of:

launching an application on a computer system;

detecting application interface elements;

connecting to a database of restricted application interface
elements;

comparing the detected application interface elements
against the database of restricted application interface
elements, wherein the database is populated with the
restricted application interface elements prior to the
application being launched, wherein the restricted appli-
cation interface elements permit interaction from a user
and are first rendered by the application prior to being
blocked;

determining the application interface elements to be
blocked, if the application interface elements match the
restricted application interface elements from the data-
base and based on (i) a system log, (ii) a category of the
application, including whether the application belongs
to known or suspected malware, (iii) analysis of active
windows, and (iv) reputation of the interface elements,
including the category of the application to which the
interface elements belong; and

blocking the application interface elements by overlaying
them with trusted interface elements in real time after the
application attempts to render the restricted application
interface elements.

#* #* #* #* #*

